Let Q be the point (-1, 4, -4), R be the point (3, -1, 3), and P be the point such that \overrightarrow{PQ} is the vector $3\overrightarrow{j} - 3\overrightarrow{k}$.

ALL ITAMS & POINTS SCORE: ___/100 PTS
UNLESS OTHERWISE NOTED

[a] If \vec{v} is a vector of magnitude 8, and the angle between \overrightarrow{PQ} and \vec{v} is $\frac{5\pi}{6}$ radians, find $\overrightarrow{PQ} \cdot \vec{v}$.

$$||\overrightarrow{PQ}|| ||\overrightarrow{V}|| \cos \Theta = (3.52)(8) \cos \frac{\pi}{6}$$

$$= (3.52)(8)(-\frac{\pi}{2})$$

$$= -12.76$$

$$||\overrightarrow{PQ}|| ||\overrightarrow{V}|| \cos \Theta = (3.52)(8)(-\frac{\pi}{2})$$

$$= -12.76$$

[b] In which octant is P?

$$(-1-x,4-y,-4-z)=(0,3,-3)$$

 $-1-x=0$ $x=-1$
 $4-y=3$ $y=1$ $(-1,1,-1)$ is in $0_{2+4}=0_6$
 $-4-z=-3$ $z=-1$

[c] Find a vector of magnitude 8 in the opposite direction as \overrightarrow{PR} .

$$\begin{array}{l}
\overline{PR} = \langle 3 - 1, -1 - 1, 3 - 1 \rangle = \langle 4, -2, 4 \rangle \\
\underline{-8} \\
||\langle 4, -2, 4 \rangle|| = \frac{8}{\sqrt{4} + (2)^{5} + 4^{2}}} \langle 4, -2, 4 \rangle \\
= \frac{8}{\sqrt{36}} \langle 4, -2, 4 \rangle \\
= \langle -\frac{16}{3}, \frac{8}{3}, \frac{16}{3} \rangle
\end{array}$$

[d] If $2\vec{i} - \vec{j} - c\vec{k}$ is perpendicular to \overrightarrow{PR} , find the value of c.

$$(2,-1,-c) \cdot (4,-2,4) = 0$$

 $8+2-4c=0$
 $c=\frac{5}{2}$

[e] Find the volume of the parallelepiped with
$$\overrightarrow{PQ}$$
, \overrightarrow{PR} and $<2,1,-1>$ as adjacent edges.

$$\begin{vmatrix} 0 & 3 & -3 & 0 & 3 \\ 4 & -2 & 4 & 4 & -2 & = 0 + 24 - 12 - (12 + 0 - 12) = 12 \\ 2 & 1 & -1 & 2 & 1 & 5 \end{vmatrix}$$

[f]If you start at point P, move 2 units to the left, 4 units down, and 6 units forward, find the co-ordinates of your ending point.

$$(-1+6, 1-2, -1-4) = (5, -1, -5)$$

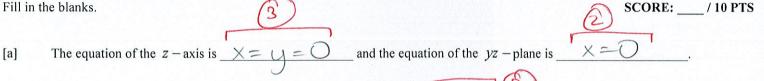
[g] Find
$$\angle QPR$$
.

Q

 $cos^{-1} \overrightarrow{PQ} \cdot \overrightarrow{PR} = cos^{-1} (0,3,-3) \cdot (4,-2,4)$
 $||RQ|| ||RR|| = (3.72)(6)$

[g] Find
$$\angle QPR$$
.

Q
 $\cos^{-1} \overrightarrow{PQ} \cdot \overrightarrow{PR}$
 $||\overrightarrow{PQ}|| ||\overrightarrow{PR}||$
 $= \cos^{-1} \frac{(0,3,-3) \cdot (4,-2,4)}{(3\sqrt{2})(6)}$
 $= \cos^{-1} \frac{(0-6-12)}{(8\sqrt{2})}$
 $= \cos^{-1} \frac{-18}{18\sqrt{2}}$
 $= \cos^{-1} - \sqrt{2}$
 $= \frac{3\pi}{4} \text{ or } 135^{\circ}$



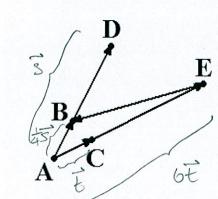
If $\vec{w} \cdot \vec{w} = 12$, then $\vec{w} \times \vec{w} =$

[a]

SCORE: _	/	10	PTS

AE is six times the length of AC, and BD is three times the length of AB. If $\vec{s} = \overrightarrow{AD}$ and $\vec{t} = \overrightarrow{AC}$, find an expression for \overrightarrow{EB} in terms of \vec{s} and \vec{t} .

In the diagram below, ABD and ACE are both line segments.



Let
$$\mathscr{D}_1$$
 be the plane $2x - 3z = 8$, $\overrightarrow{D}_1 = \langle 2, 0, -3 \rangle$ and let \mathscr{D}_2 be the plane $3x - y - 5z = 6$. $\overrightarrow{D}_2 = \langle 3, -1, -5 \rangle$

Let ℓ_1 be the line which passes through $(0, 6, -4)$ and is parallel to both \mathscr{D}_1 and \mathscr{D}_2 .

Let
$$\ell_1$$
 be the line which passes through $(0,6,-4)$ and is parallel to both \wp_1 and \wp_2 . Let ℓ_2 be the line which passes through $(-4,-8,6)$ and is parallel to ℓ_1 .

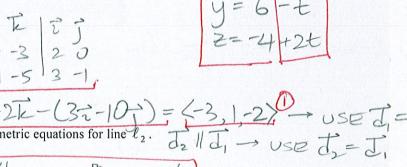
Let \wp_3 be the plane which passes through (2, -7, 9) and is perpendicular to the parallel lines ℓ_1 and ℓ_2 .

[a] Find parametric equations for line
$$\ell_1$$
.

 $X = 13+1$

$$\vec{x} = 3t$$
 $\vec{y} = 6 - t$
 $\vec{y} = 6 - t$
 $\vec{y} = 3 + t$
 $\vec{y} = 6 - t$

$$x = 3t = 3$$
 $y = 6 - t = 2 = -4 + 2t$



Find symmetric equations for line
$$\ell_2$$
. $d_2 \parallel d_1$

$$\frac{2}{3} = \frac{y+8}{3} = \frac{z-6}{2}$$

$$\frac{x+4}{3} = -y-8 = \frac{z-6}{2}$$

3(x-2)-(4+7)+2(z-9)

$$3 = y + 8 = 2 - 6$$

$$2 = y + 4 = 2 - 6$$

$$2 = 2 - 6$$

$$3 = -y - 8 = 2 - 6$$

$$2 = 2 - 6$$

[c]

(3)
$$-2k-(3i-10j)=(-3,1-2)$$
 USE $J=(3,-1,2)$
Find symmetric equations for line ℓ_2 . $J_2 \parallel J_1 \rightarrow \text{USE } J_2 = J_1$

Find the standard (point-normal) equation for plane
$$\wp_3$$
. \vec{n}_3 / \vec{J}_1 , $\vec{J}_2 \rightarrow USE \vec{N}_3 = \vec{J}_1 = \vec{J}_3$